Lecture 19

Charles Favre

Math-601D-201: Lecture 19. Pseudo-convex domains

Charles Favre charles.favre@polytechnique.edu

March 17th, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Pseudo-convex domains

 $\Omega \subset \mathbb{C}^n$ connected open set.

Definition

Ω is a pseudo-convex domain iff for any compact set K ⊂ Ω, the set

$$\hat{\mathcal{K}}_{PSH(\Omega)} = \bigcap_{u \in PSH(\Omega)} \{z \in \Omega, \ u(z) \leq \sup_{K} u\}$$

is compact in Ω .

Observation

$$\hat{K}_{PSH(\Omega)} \subset \hat{K}_{\mathcal{O}(\Omega)} \equiv \hat{K}_{\Omega}$$

hence any domain of holomorphy is a pseudo-convex domain

Lecture 19

Charles Favre

・ロト・日本・日本・日本・日本・日本

Characterization of pseudo-convex domains

Lecture 19

Charles Favre

 $\Omega \subset \mathbb{C}^n$ connected open set.

Theorem

The following are equivalent:

- 1. Ω is pseudo-convex;
- **2**. $-\log dist(\cdot, \partial \Omega)$ is psh;
- 3. there exists $u \in PSH(\Omega) \cap C^0(\Omega)$ such that for all $c \in \mathbb{R}$

 $\Omega_c(u) = \{u < c\}$ is relatively compact in Ω

・ロト・日本・モート ヨー うくぐ

Geometric characterization of pseudo-convex domains

 $\Omega \subset \mathbb{C}^n$ connected open set.

Definition

 Ω is geometrically pseudo-convex iff for any continuous family of holomorphic disks $F : [0, 1] \times \overline{\mathbb{D}} \to \mathbb{C}^n$ such that

•
$$z \mapsto F(t, z)$$
 is holomorphic;

•
$$F(t,z) \subset \Omega$$
 if $t < 1$;

►
$$F(1, z) \subset \Omega$$
 if $|z| = 1$

then $F(1, z) \in \Omega$ for all $|z| \leq 1$.

Theorem

A domain is pseudo-convex iff it is geometrically pseudo-convex.

Lecture 19

Charles Favre

・日本・西本・山本・山本・山本

Being pseudo-convex is a local property

Lecture 19

Charles Favre

 $\Omega \subset \mathbb{C}^n$ connected open set.

Theorem

 Ω is pseudo-convex iff for any $p \in \partial \Omega$, one can find an open neighborhood $\omega \ni p$ such that $\Omega \cap \omega$ is pseudo-convex.